If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+54t+2.5=0
a = -16; b = 54; c = +2.5;
Δ = b2-4ac
Δ = 542-4·(-16)·2.5
Δ = 3076
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3076}=\sqrt{4*769}=\sqrt{4}*\sqrt{769}=2\sqrt{769}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(54)-2\sqrt{769}}{2*-16}=\frac{-54-2\sqrt{769}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(54)+2\sqrt{769}}{2*-16}=\frac{-54+2\sqrt{769}}{-32} $
| 7-b=8 | | 4(2x−1)=11+3x | | -16t^2+53.62t+2.5=0 | | x=3*10^7 | | 2q√+5=11 | | (e+2)X3=12 | | 3x-9x+6=203x+4x | | 3.8-(-19.7x)=2.7+13.3x | | 6=-6+4y | | x=2x+9(-2)=-10 | | 3x-18=-9x+6 | | 3x=5x-x=56 | | 2.1=r/14 | | 5b^2*8b=0 | | 3k2+10k+8=0 | | 6x=3x-4=32 | | u/4-2=-10 | | 7-2x=x+1 | | 6x10=-50-4x | | (8/y)+(5/7)=(1/(7y)) | | 2(-10-9y)+8y=0 | | -(2)/(4)=(x)/(8) | | 7(x+2)–10=7x+4. | | 5x+2^x=0 | | -2(-6-7h)+h=145 | | 3x+6=2-x-6 | | 3+5x-5x=15 | | 14x-(34x-6+8=0 | | 2.5+70t-16t^2=0 | | 13x-6=(2)(21x+8) | | 2(6x+4)-6+2x=3(4x=3)=1 | | -3(1+8n)-23=2n |